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Abstract
We investigate the motion of bound-state poles in two quantum wave guides
laterally coupled through a window. The imaginary momentum ik at the bound-
state poles is studied as a function of the size a of the window. Both bound
and virtual states appear as a spans the whole range from 0 up to +∞. We
are able to find simple scaling laws relating the critical value of the window
size at which the nth bound state appears to the number n of bound states, in
the limit of large n. A similar relation is also provided for the slope and the
second derivative of the pole trajectories in the (k, a) plane. These relations
are characterized by an extremely high numerical accuracy. We also evaluate
the exact value of the first two derivatives for a = 0.

PACS numbers: 03.65.Ge, 73.21.−b

1. Introduction

With recent developments in microelectronics it is possible to create in the laboratory almost
two-dimensional wave guides where the motion of the electrons can exhibit typical quantum
effects [1–6]. These quantum wires are crystalline structures, characterized by high purity.
At low temperatures, where electron–phonon and electron–electron scattering are negligible,
the electron mean free path is large with respect to the wire size, and the electron achieves
the ballistic regime and can be considered as a free particle. At the same time, the absence
of inelastic processes assures phase coherence of the electron wavefunction, so that quantum
interference phenomena become amenable to experimental investigation.

Mesoscopic systems of this type have received a lot of attention in recent times [7–10],
since they allow us to study new physics, where the dual particle–wave nature of matter is
exposed at a length scale between 100 Å and a few µm. The recent technological advances in
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Figure 1. Two separate conducting strips of width d communicating through a common window
of length 2l.

semiconductors have succeeded in producing such devices. Experimental evidence is available
of quantum interference phenomena in confined geometries, such as narrow constrictions
[1, 2], quantum wires with a stub structure [3, 4] or with double-bend discontinuities [5, 6].

The strong analogies between quantum electronic systems and optical devices have been
often stressed and have given major impetus to mesoscopic physics [8, 11]. This analogy stems
from the close similarity between the stationary Schrödinger equation for the electron and the
Maxwell equation for the electric field, as used in integrated optics [11]. Noteworthy examples
of these similarities are provided by electron focusing through a mesoscopic electrostatic lens,
and by Fabry-Pèrot-like transmission resonances in semiconductor superlattice structures [8].

The geometry of systems, such as bends, corners or crosses has a strong influence on
the conduction properties of the electrons. This can be easily understood when conduction is
regarded as a transport phenomenon, which in the mesoscopic domain is essentially determined
by the scattering matrix of the device. When the proper boundary conditions are imposed on
the solution of the Schrödinger equation, the behaviour of the wavefunction becomes sensitive
to the shape of the device. As a consequence, pure geometric properties in conduction channels
can lead to bound states or resonances. Therefore, it is quite important nowadays to have an
accurate description of the relation between geometry and observables. This relation is highly
implicit, since it emerges from the solution of a multichannel eigenvalue problem. To grasp
the physics of mesoscopic devices, it is valuable to obtain simple, explicit relations between
the shape of the system and its physical behaviour.

In the present work we consider two straight quantum wires of the same width, which can
communicate through a window in their common boundary, as shown in figure 1, and study the
behaviour of bound states when the window size is varied. This system can be considered as an
idealized model of actual quantum-wire devices, such as the four-terminal electron waveguide
coupler [12] or the quantum switch [13], and has been considered both theoretically [14] and
experimentally [15] already several years ago. It turns out that the transport properties of
coupled quantum wires reflect the spectral properties of the associated Hamiltonian with the
proper boundary conditions. On physical grounds, the potential confining the electrons in the
transverse direction ought to be evaluated self-consistently, leading to potential wells which in
many cases are rather flat inside the guide, and increase rather steeply at the borders. A rigorous
treatment of the problem with a finite potential well would imply the inclusion of the continuum
in the basis functions, which is a very complex problem. Therefore, it is usual to introduce an
idealized model for quantum wave guides, with hard wall (Dirichlet) boundary conditions.
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Coupled quantum wave guides have been the subject of several detailed investigations
in the literature [16–23], where bounds on the number of bound states and a corresponding
scaling law with the window size were found. From the geometry of the problem, one expects
a dependence upon only one parameter, such as the ratio a between the window size and the
width of one of the wires. Problems of this type occur frequently in physics, where a has
the meaning of strength of an interaction. Motivated by this analogy, we decided to apply
well-established techniques of scattering theory, to analyse the motion of the S-matrix poles
in the complex momentum plane. This allows one to follow the evolution of a bound state
into a resonance as the ‘strength’ a is varied. In particular, we study the threshold region,
where a new bound state is produced as the size parameter a increases, and provide an explicit
functional relation between this critical value of a and the total number n of bound states
supported by the system.

The trajectories described by the bound-state poles in the complex momentum plane
exhibit an increasingly similar shape and slope with increasing a. Through a combination of
analytical and numerical methods, we show that the slope approaches the asymptotic value
3π/4; higher-order correction terms depend exponentially upon n and, consequently, upon the
size parameter.

The behaviour of the second derivative of the trajectory is also studied, as well as the
limiting case of a = 0.

This paper is organized as follows. In section 2, we briefly summarize the formalism for
the bound-state problem. The analytical relation among the number n of bound states, and
the critical value of the size parameter a, at which the nth bound state appears, is presented in
section 3, in the limit of a very large window. There, we also discuss the asymptotic behaviour
of the slope of the bound-state pole trajectories in the complex momentum plane.

2. The bound-state problem

Let us consider the system shown in figure 1, consisting of two symmetric wave guides of
infinite length and width d, communicating through a window of width 2l. When solving the
multichannel problem, one generally exploits as much as possible the symmetry properties
of the problem under consideration. In the present case, one takes into account the right–left
mirror symmetry with respect to the centre of the window, plus the up–down symmetry with
respect to the x-axis [16]. This implies for the bound and scattering wavefunctions, definite
parity properties, under the transformation x ↔ −x or y ↔ −y. The solutions antisymmetric
with respect to the x-axis have to vanish at the window, so that the corresponding eigenspectrum
is trivial, consisting of the eigenvalues of two separate strips, with no bound states, but only
scattering states. For the solutions symmetric with respect to the x-axis, the left–right symmetry
can be exhibited by resorting to wavefunctions with definite parity properties ψ±(x, y), where

ψ±(x, y) = ±ψ±(−x, y). (1)

As a consequence, one can limit oneself to solutions for x � 0 only, with the Dirichlet
boundary condition that they vanish for x = 0 for odd (−) parity, or the Neumann boundary
condition implying the first derivative to vanish at the origin, for the even (+) case. Moreover,
the up–down symmetry of the solutions implies that one can limit oneself to the first quadrant
only, namely x � 0, 0 � y � d.

Due to the geometry of the problem, a particle propagating in the device is confined within
the wires, and the wavefunction has to vanish along the walls, which corresponds to Dirichlet
boundary conditions, except in the open window region of width 2l. Consequently, the wave
number in the transverse direction k⊥ is quantized, leading to standing waves χj (y) in this
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direction, which can be used as basis functions to expand the total wavefunction ψ(x, y). In
the following, we assume that there are N transverse modes in each duct.

In the outer region outside the window the bound-state wavefunction has to fulfil outgoing
wave boundary conditions, in all channels, namely

ψout
± (x, y) =

∑
j

ρ±
j exp [ik‖j (x − l)]χj (y) x � l (2)

where the longitudinal wave number k‖j is a positive pure imaginary number for a bound
state, implying the usual exponential decreasing behaviour for equation (2). The transverse
eigenfunctions have the form

χj (y) =
√

2

d
sin

(
j
π

d
y
)

. (3)

It is convenient to use the width of the wave guide as the basic scale parameter, and
measure all quantities in relation to it. Thus, we use units such that h̄2/2m = 1, and express
the total energy E in units of (π/d)2. Separating the longitudinal and transverse motion one
can write

E = k2
⊥j + k2

‖j , (4)

with the scattering region starting at E = 1. Bound states are located below the continuum
threshold, and are contained in the energy interval 1/4 < E < 1. The boundary conditions
imply a quantization for the energy stored in the transverse modes in the form k⊥j = j ,
with j a positive integer. Energy can be transferred from the longitudinal motion to the
transverse modes. If m transverse modes (1 � m � N) can be excited because of energy
conservation, one has in general m open channels or propagating modes, and N − m closed
channels (evanescent modes). For the latter, energy conservation implies that the longitudinal
momenta k‖j = ikj are purely imaginary, with kj given by

kj =
√

j 2 − E, j > m, (5)

in units of π/d.
In the inner region (0 � x � l, 0 � y � d) the symmetric and antisymmetric

wavefunctions are

ψin
+ (x, y) =

∑
j

b+
j

cos (pjx)

cos (pj l)
ηj (y) (6)

ψin
− (x, y) =

∑
j

b−
j

sin (pjx)

sin (pj l)
ηj (y), (7)

where the transverse basis functions are

ηj (y) =
√

2

d
sin

(
(2j − 1)

π

2d
(d − y)

)
, j = 1, 2, . . . . (8)

Here, the up–down symmetry restricts the transverse quantum numbers to odd values 2j − 1

only. The quantities pj , due to energy conservation, have to fulfil pj =
√

E − (
j − 1

2

)2
.

The coefficients ρ±
j in equation (2), and b±

j in equations (6), (7) can be evaluated from the
matching conditions at x = l for the wavefunctions and their derivatives, with definite parity
inside and outside the window,

ψ
(in)
± (l, y) = ψ

(out)
± (l, y),

∂ψ
(in)
± (x, y)

∂x

∣∣∣∣∣
x=l

= ∂ψ
(out)
± (x, y)

∂x

∣∣∣∣∣
x=l

, (9)
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where ψ
(in)
± (x, y) and ψ

(out)
± (x, y) are given by equations (6), (7) and (2), respectively. One

finds [16]

ρ±
j =

∑
m

〈χj |ηm〉b±
m (10)

where the quantities b±
m are the solutions of the linear equations∑

m

[
kj ∓ Q±

m(pml)
]〈χj |ηm〉b±

m = 0, (11)

where the scalar products Ojm ≡ 〈χj |ηm〉 can be evaluated analytically, and are given by

Ojm = (−1)m+1 2

π

j

j 2 − (m − 1/2)2
, (12)

and the functions Q±
m(pml) are defined according to

Q+
m(pml) = pm tan (pml), Q−

m(pml) = pm cot (pml). (13)

It is worth noting that the coupling between the channels is here realized through the
existence of specific boundary conditions imposed by geometry.

3. Bound states and their scaling properties

When a bound state occurs, the wavefunction is localized mainly inside the window, and
there is no incoming wave. Under these circumstances all channels remain closed, and the
homogeneous equations (11) have non-trivial solutions only if the determinant of the matrix

M±
jm = [

kj ∓ Q±
m(pml)

]
Ojm (14)

vanishes. This gives the secular equation detM± = 0, determining the purely imaginary
channel momenta ikj . We solved the secular equation for different values of the size parameter
a = l/d. Since for a given energy E, the momenta kj are related to each other for the various
values of j by equation (4), we have chosen the momentum associated with the lowest
transverse mode k1 as an independent variable, and determined how it behaves as a function of
a. The reason for the choice of the momentum plane instead of the energy plane is twofold. As
we shall see, the secular equation has solutions for both k1 > 0 and k1 < 0, in correspondence
to bound and virtual states, respectively. The existence of virtual states is most easily exhibited
in the complex momentum plane, whereas a careful analytic prolongation into the unphysical
sheet would be required in the E plane. A second motivation for this choice stems from our
requirements of numerical accuracy. The pole trajectories in the (k1, a) plane are rather steep
near the threshold value k1 = 0. This is not the case in the energy plane, where the pole
trajectories join smoothly the E = 1 axis, which could result in numerical instabilities near
threshold, as already noted in [16].

In principle, the secular equation ought to be solved for an infinite number of basis
functions; however, from a practical point of view, one has to resort to truncations. We
checked the convergence of our calculations by locating the bound-state poles employing
N = 1, 2, 4, 8 . . . up to N = 210 = 1024 basis functions. We plot in figure 2 the energy E
in units of (π/d)2, as a function of the size parameter a, in correspondence to solutions of
the secular equation for both the even and the odd cases. Both anti-bound and bound states
occur according to the negative or positive sign, respectively, of k1. They are represented in
figure 2 by dashed and full lines, respectively. With the window closed, one has two separate
strips, with a purely continuous spectrum, starting at E = 1, k1 = 0. When the window
opens up, a positive-parity bound state appears, that is k1 > 0, starting from the upper edge
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Figure 2. Energy of the positive (+) and negative (−) parity bound states as a function of the size
parameter a ≡ l/d. Energies are given in terms of (π/d)2, so that the threshold is fixed at E = 1.
Both bound (full lines) and virtual (dashed lines) states appear as a varies.

Figure 3. Motion of the bound-state poles in the complex momentum plane for varying a. The
momentum ik1 for the fundamental mode is plotted as a function of a. The full lines represent the
positive parity poles, whereas the dashed lines refer to negative parity states. The triangles mark
the points in the (k1, a) plane where the virtual states evolving from a bound state, with decreasing
a, collide with another virtual state. The full circles indicate the values of a for which a bound
state appears at threshold.

of the bound-state region E = 1. The bound-state pole moves with increasing a towards the
asymptotic limit of a single wire with width 2d. This gives an energy E = 1/4, corresponding
to the minimum energy available in the transverse mode, the associated closed-channel wave
number being k1 = √

3/2. Note that E = 1/4 coincides with the lower edge of the energy
interval where bound states may be located.

The role played by bound and virtual (or anti-bound) states can be more clearly perceived
in figure 3, where the momentum k1 at the poles is plotted as a function of a. The first
odd solution appears as a virtual state in the lower k-plane, k1 < 0. It is associated with
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Figure 4. Motion of the poles associated with the second positive parity solution in the complex
k‖1-plane, with varying a. The dots correspond to values of a which differ by �a = 0.1. As a
decreases, the bound-state pole moves downwards, and the anti-bound state pole moves upwards
along the imaginary axis. For a < 1.3 the two poles move downwards in the lower half-plane.

a wavefunction which grows exponentially as x → ±∞. For a ∼ 0.7 the solution of the
secular equation changes sign, and one gets a bound-state pole moving upwards on the positive
imaginary axis of the complex momentum plane. The following even and odd poles move
along regular and equally spaced trajectories, in a quite symmetric fashion, their number
increasing monotonically with the window width. From the numerical solution of the secular
equation, one in general observes for a certain a several solutions, which can be grouped into
pairs of a bound and an anti-bound state. They tend to gather near the asymptotic momentum
values ±√

3/2, corresponding to a unique wave guide of width 2d. With decreasing a, the
bound and virtual states of each pair will move towards each other, colliding at a certain point
shown in the figure by a triangle. As in potential scattering theory, this point corresponds to the
threshold where a resonance and an anti-resonance appear, moving away in opposite directions
of the complex k-plane. This is illustrated in figure 4 for the second even solution. For large a,
as a decreases, the poles associated with the bound and anti-bound states move slowly towards
each other on the imaginary k-axis, in correspondence to the flat part of the trajectory in the
(k1, a) plane of figure 3. As the slope of the trajectory increases, the two poles move faster on
the imaginary axis, and collide for a � 1.3, at k1 � −0.3. For decreasing a, they move in the
lower complex momentum plane with increasing velocity, along trajectories symmetric with
respect to the imaginary axis. As is well-known, the pole in the fourth quadrant corresponds to
a resonance, whereas the pole in the third quadrant represents an anti-resonance. The collision
points in the (k1, a) plane approach the k1 = 0 value for very large a, as can be seen in
figure 3.

The existence of bound states for this type of wave guides has been already proved in
[16], where bounds on their number with varying a, and on the critical values of the window
width at which they appear have been provided. We have decided to perform a few computer
experiments, in order to have a deeper insight into the behaviour of the bound states for varying
a. To this end, particular care has been taken with the numerical accuracy of the calculations.
It was found that, employing N = 1, 2, 4, . . . up to N = 210 basis functions, at each step the
difference between the new estimate of a and the previous one was almost halved, so that a
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Figure 5. The increase of convergence attained through repeated application of the Richardson
extrapolation method. For each step of the procedure (s = 0, 1, 2, . . . , 8), the full dots give the
quantities |a(s)

2N − a
(s)
N | as a function of log2 N , where N represents the dimension of the basis. The

full lines are only for illustrative purpose.

relation of the form

ac = aN +
α

Np
+ O

(
1

Np+1

)
, (15)

with p = 1, can be assumed between the converged value ac and the Nth order estimate
aN . Convergence can be improved by applying the Richardson extrapolation method [24].
Considering equation (15) for N and 2N , and eliminating the constant α, one has the new
series of approximations a

(1)
N , which also satisfy equation (15), but with p = 2. Repeating

this procedure, one has at the sth step

a
(s)
N = 2pa

(s−1)
2N − a

(s−1)
N

2p − 1
, s = 1, 2, . . . (16)

which ought to fulfil equation (15) with p = 1 + s. In figure 5 we report the result of repeated
applications of Richardson procedure. The deviations

∣∣a(s)
2N − a

(s)
N

∣∣ are plotted for each step
as a function of the logarithm of N in base 2. The dots on the top line represent the results
obtained varying N up to N = 210 basis functions, whereas the dots on the other lines give
the deviations obtained with successive applications of the Richardson method. The results
lie on almost straight lines of increasing slope for each calculation, exhibiting the increasing
convergence of the series. The almost linear dependence in figure 5 implies that

∣∣a(s)
2N − a

(s)
N

∣∣
scales as a power of N . Actually, it was found that, with 210 basis functions, at the 6th step of
the Richardson procedure, the accuracy of the calculations can be guaranteed up to the 14th
significant digit. Such computer experiments are relevant for the present work, which aims at
fixing the asymptotic behaviour of the bound state solutions with a high degree of accuracy.

In figure 6(a) we plot the critical value an of the size parameter, at which the nth bound
state appears, as a function of the number n of bound states. The quantity an ought to fulfil the
bounds (2.6) of [16], which in our notation reads for symmetric guides (n−1)

√
3 � an � n

√
3.

Figure 6(a) is consistent with this result, and exhibits a clear linear dependence of an
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(a) (b) (c)

Figure 6. (a) Critical values of the size parameter a at which a new bound state appears as functions
of the number of bound states n. (b) Absolute value of the difference between the outcome of the
numerical calculation and the values given by the first two (full dots) and three (crosses) terms in
the asymptotic formula (28), on a log scale. (c) Difference between the outcome of the numerical
calculation and the values given by the first three terms in the asymptotic formula (28), divided by
exp(−2

√
5/3πn).

upon n. Similarly, one immediately verifies that our results agree with the inequality
an

√
3 � n � 1 + an

√
3, for the number of bound states supported by a window of given

width [16].
From the previous discussion, it seems that there is an almost linear dependence of the

number of bound states on a. To have a deeper understanding of the physical properties of the
mesoscopic devices considered here, it is quite interesting to ascertain how the appearance of
bound states depends upon the length parameter a. The asymptotic behaviour of the bound
state eigenvalues at threshold has been the subject of several mathematical investigations in
recent times [19, 20]. Here, we approach a similar question, looking for explicit and accurate
functional relations between the critical value of a at which a new bound state emerges from
the continuum, and the number n of bound states.

First, we observe that the matrix M±
jm can be rewritten as

M±
jm = (−1)m+1 2j

π2
A±

jm. (17)

The reduced matrix A±
jm is given by

A±
jm = [

π

√
j 2 − 1 + k2

1 ∓ π

√
1 − k2

1 − (m − 1/2)2f ±
m

]
ojm, (18)

where

f +
m(k1, a) ≡ tan

(
π

√
1 − k2

1 − (m − 1/2)2a
)

(19)

f −
m (k1, a) ≡ cot

(
π

√
1 − k2

1 − (m − 1/2)2a
)
, (20)

ojm ≡ 1

j 2 − (m − 1/2)2
, (21)
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and momenta are measured in terms of π/d. One can easily verify that for a matrix of the
form Sij = αiβj sij , like the one under consideration, one has det S = det s

∏N
i=1 αiβi . Since

we have to solve the secular equation detM± = 0, we shall from now on refer to the simpler
matrix A. Moreover, we are interested in the situation, when a new bound state appears at
threshold, namely for k1 = 0, so that the matrix A becomes simply

A±
jm(k1 = 0) = [

uj ∓ zmf ±
m (0, a)

]
ojm, (22)

with

uj ≡ π
√

j 2 − 1 zm ≡ π
√

1 − (m − 1/2)2. (23)

and

f +
m(0, a) ≡ tan (zma) (24)

f −
m (0, a) ≡ cot (zma), (25)

For dimension 1 the result is trivial: for the symmetric solution the condition det A+ = 0 leads
immediately to

(
√

3/4πa) = arctan(0) = nπ (26)

fulfilled by

an = 2n√
3

n = 0, 1, 2, . . . (27)

In the general case of larger dimensions, we are in presence of a nonlinear problem, since
the width of the window and the number of bound states are related to each other through
the secular equation. We solve the latter equation, using a truncated series expansion in
non-integer powers of exp (−a). The calculation is very involved, and therefore was left to
appendix A. In the limit of a large size parameter, and using the Richardson extrapolation
method, we obtain for both the symmetric and the antisymmetric solutions

a±
n � n√

3
+ 0.145 294 477 864 05(1) ∓ 0.050 640 518 625 32(1) exp

(
−

√
5

3
πn

)

+O
(

exp

(
−2

√
5

3
πn

))
n = 0, 1, 2, . . . (28)

where n is even (odd) for the symmetric (antisymmetric) case.
These expressions are confirmed by an inspection of figures 6(b) and (c). In figure 6(b)

the difference between the numerical results and the calculation using only the first two or
three terms of the asymptotic expression of equation (28) are shown on a log scale. They
actually follow an exponential law, and are indistinguishable from the numerical noise beyond
the fourth bound state. Figure 6(c) shows that higher order corrections in equation (28) behave
as exp

(−2
√

5
3πn

)
. The oscillatory behaviour originates from the fact that higher order terms

are different in the case of even and odd solutions.
As figure 3 shows, the trajectories of the bound- or virtual-state poles in the (k1, a) plane

exhibit an increasingly similar shape, and tend to cross the real axis with the same slope with
increasing a. One may wonder whether there is some simple asymptotic law for the pole
position underlying this geometric behaviour. The asymptotic properties of the bound state
eigenvalues near the critical points an, where a new bound state emerges from the continuum,
have been investigated in [19] under a mathematical point of view. There, it has been proven
that the eigenvalues scale as (a−an)

2. It can be expected, therefore, that k1 is a linear function
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Figure 7. Absolute value of the difference between dk1/da and the asymptotic value (3/4)π

(dots), and the first two terms of equation (30) (crosses), as a function of the number of bound
states n.

of a in the neighbourhood of an, and that its first derivative approaches a constant value as
a → ∞, when higher-order correction terms are neglected. We shall show in the following
that this is actually the case, providing the precise value of the leading term in the asymptotic
expression of dk1/da. To this end, one has to study the above derivative at k1 = 0. Since
the relation between k1 and a is an implicit one, through the secular equation det A± = 0, the
derivative has to be evaluated according to

dk1

da
= −∂ det A±

∂a

/
∂ det A±

∂k1
, (29)

evaluated at k1 = 0 and a = an. Details for the calculation of these derivatives are given in
appendix B where we show that

(
dk1

da

)
k1=0

= 3

4
π ∓ 1.341 109 189 5071(1) exp

(
−π

√
5

3
n

)
+ O

(
exp

(
−2

√
5

3
πn

))
. (30)

The sign ∓ refers to the even and odd solutions, respectively, and, as usual, n runs over
even or odd values, for the symmetric or antisymmetric case. One sees from equation (30)
that the higher-order correction term decreases exponentially for large n, and the slope
dk1/da approaches the constant value 3π/4. This behaviour is confirmed by a comparison
with the outcome of numerical calculations, as shown in figure 7, where the quantity
|(dk1/da)k1=0 − 3π/4| is plotted for the first seven bound states. The linear dependence
confirms the exponential behaviour exhibited in equation (30). Including also in the previous
difference the second term of equation (30), the agreement is even better.

Proceeding in a similar way, the second derivative of k1 with respect to a can be obtained,
as described in appendix C, giving
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Figure 8. Second derivative of k1 with respect to a (left panel), and absolute value of the difference
between the second derivative and the first two terms of equation (31) (right panel), as a function
of the number of bound states n.

(
d2k1

da2

)
k1=0

= − 3

16

√
3π3n + 0.577 482 652 977 66(1) + O

(
exp

(
−π

√
5

3
n

))
,

n = 0, 1, 2, . . . (31)

valid for an infinite set of basis functions and large a.
The results of the numerical calculation of the second derivative are shown in figure 8,

confirming the leading term and the exponential behaviour of higher order corrections, given
by equation (31). It is worth noting that the leading term in equations (28, 30, 31) coincides
with the analytic result one obtains restricting the dimension of the matrix A± to one.

We have considered also the behaviour of the first two derivatives of k1 with respect to
a at the origin a = 0. As detailed in appendices B and C, we found that the first derivative
vanishes, while the second derivative is simply 8.

4. Conclusions

We have considered the bound states supported by two conducting strips communicating
through a common window. Our analysis in the complex momentum plane has put in evidence
the existence of both bound and virtual states, corresponding to solutions with a positive or
negative coefficient of the imaginary momentum ik1, respectively. We have considered in
particular detail the behaviour of the bound-state poles for large values of the window size
parameter a ≡ l/d. In the asymptotic regime the critical value of a at which a new bound
state appears scales linearly with the number of supported bound states, in agreement with
the analysis of [16]. In addition, we could provide a next-to-leading-order correction term,
which decreases exponentially with n, as exhibited in equation (28). This term has been
determined through a high-precision numerical analysis. We considered also the slope of
the pole trajectories in the (k1, a) plane at threshold. Again, our results are quite consistent
with those of the previous mathematical analysis in the energy plane [19]. We found that,
as a increases, dk1/da approaches the simple value (3/4)π , the first correction term again
decreasing exponentially as a function of n (see equation (30)). On the grounds of our
computations, one may conclude that the asymptotic regime, described by the leading-order
terms, is already reached beyond the fifth bound state. A similar study was done for the second



Asymptotic properties of bound states in coupled quantum wave guides 1219

derivative of the trajectory, and for the limiting case of a = 0, for which the first derivative
vanishes and the second derivative is simply equal to 8.
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Appendix A

We are interested in determining at which value of the size parameter, a bound state appears,
and obtain the functional dependence of a upon the total number n of existing bound states.
The study will be made for the symmetric case, since anti-symmetric states can be dealt with
in a similar fashion.

A bound state is defined by the condition that the determinant of the matrix defined by
equation (18) vanishes,

det A+(k1, a) = 0. (A.1)

The threshold for the appearance of a bound state corresponds to the longitudinal
momentum associated with the lowest transverse mode, k1 = 0. At this momentum, the
matrix A+(0, a) is given by equation (22), and it is immediate to see that a = 0 is a solution
of equation (A.1), since the first row is identically zero. This implies that even the tiniest
opening will create the conditions for the existence of a bound state.

To evaluate the non-vanishing values of the size parameter at which a new bound state
appears, one has to solve equation (A.1). An analytic solution of this problem is clearly
impossible; however, for very large a one can look for an approximate solution through a
series expansion. To this end, we observe that the argument of the trigonometric functions in
Ajm becomes for m � 2 a pure imaginary number iα = iπ

√
(m − 1/2)2 − 1 a, so that for

α → ∞ one can resort to the series expansion

tan(iα) = i(e2α − 1)

(e2α + 1)
= i(1 − 2e−2α + 2e−4α + O(e−6α)). (A.2)

For a, and consequently α, large, we can keep only the first term tan(iα) � i, and the
matrix elements become

A+
j,1 =

(
π

√
i2 − 1 − π

√
3

4
tan

(
π

√
3

4
a

))
oj,1 (A.3)

A+
j,m = (π

√
i2 − 1 + π

√
(j − 1/2)2 − 1)oj,m j � 2 (A.4)

that leads to the general solutions

an = 2n√
3

+
2

π
√

3
arctan

(
2

π
√

3

det B

det C

)
n = 0, 1, 2, . . . (A.5)

where the matrices B and C do not depend on a and are given by

Bj1 = ujoj1, Bjm = (uj + wm)ojm m > 1 (A.6)

Cj1 = oj1, Cjm = (uj + wm)ojm m > 1, (A.7)



1220 E Maglione et al

where uj and ojm are defined by equations (23) and (21), respectively, and

wm ≡ π

√(
m − 1

2

)2

− 1. (A.8)

We note that, since the second term in the solution for large a, equation (A.5), does not
depend on the number of bound states n, they will be equidistant from each other.

An improved estimate for an with respect to equation (A.5) can be obtained, keeping
the exact expression (A.3) for Aj1, and including the second term in the series expansion of
tan(iα) in the second column of A. This is justified since the smallest value of α is obtained
for m = 2, α = π

√
5
4a. One obtains

A+
j2 =

[
uj +

√
5

4
π(1 − 2e−√

5πa)

]
oj2 (A.9)

A+
jm = (uj + wm)ojm, m > 2. (A.10)

The equation we get now is

det A+ = det B −
√

3

4
π tan

(√
3

4
πa

)
det C − π

√
5e−π

√
5a

×
[

det D −
√

3

4
π tan

(√
3

4
πa

)
det E

]
= 0, (A.11)

with

Dj1 = ujoj1, Dj2 = oj2, Ej1 = oj1, Ej2 = oj2, (A.12)

and Djm = Ejm = (uj + wm)ojm for m > 2.
Equation (A.11) can be solved only perturbatively, using as a starting value the

approximation (A.5). We look for a solution of the form

an = 2n√
3

+
2

π
√

3
arctan

(
2√
3π

det B

det C

)
+ x, (A.13)

where x should be a small number. Substituting equation (A.13) into equation (A.11), and
making a series expansion in x up to the first order we get

x =
√

5(det B det E − det D det C)

π
(

3
4 (det C)2 + 1

π2 (det B)2
) exp

(
−2

√
5

3
arctan

(
2√
3π

det B

det C

))
exp

(
−2

√
5

3
πn

)
.

(A.14)

Using the Richardson extrapolation method to obtain a good approximation for the
determinants of the matrices B,C,D,E, for very large N, we get

an = 2n√
3

+ 0.145 294 477 864 05(1) − 0.050 640 518 625 32(1) exp

(
−2

√
5

3
πn

)

+O
(

exp

(
−4

√
5

3
πn

))
n = 0, 1, 2, . . . . (A.15)

It is interesting to observe that, if only one transverse mode is considered, the matrix has
dimension one, and the bound-state condition at threshold becomes simply

A+
11(0, a) = −

√
4

3
π tan

(√
3

4
πa

)
= 0 (A.16)

which can be solved analytically, giving the leading term a = 2n√
3

of equation (A.15).
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The above arguments can be readily extended to the antisymmetric case, the only
difference being the substitution of the function tan (zma) with − cot (zma). A calculation
similar to the previous one gives

an � 2n + 1√
3

+
2

π
√

3
arctan

(
2√
3π

det B

det C

)
−

√
5(det B det E − det D det C)

π
(

3
4 (det C)2 + 1

π2 (det B)2
)

× exp

(
−2

√
5

3
arctan

(
2√
3π

det B

det C

))
exp

(
−

√
5

3
π(2n + 1)

)

+O
(

exp

(
−2

√
5

3
π(2n + 1)

))
n = 0, 1, 2, . . . . (A.17)

The above results can be summarized as follows,

a±
n � n√

3
+ 0.145 294 477 864 05(1) ∓ 0.050 640 518 625 32(1) exp

(
−

√
5

3
πn

)

+O
(

exp

(
−2

√
5

3
πn

))
n = 0, 1, 2, . . . (A.18)

where even/odd n correspond to even/odd solutions, respectively.

Appendix B

In this appendix, the derivative of k1 with respect to the size parameter (see equation (29)) is
calculated at threshold, at the values of a where a bound state appears.

From the properties of determinants, the derivative of det A± can be rewritten as a sum
of N determinants, in which one row (or column) is substituted by the derivative of the matrix
elements. Starting with the denominator of equation (29), noting that

∂A±
jm

∂k1

∣∣∣∣
k1=0

= πδj1o1m, (B.1)

only the first term of the sum is different from zero, and one gets

∂det A±

∂k1
= det

∥∥(
πδj1 + (1 − δj1)

(
uj ∓ zmf ±

m

))
ojm

∥∥, (B.2)

with uj and zm given by equation (23). Here and in the following all the derivatives are
evaluated at k1 = 0.

The derivative of det A± with respect to a, on the other hand, is the sum of N terms

∂det A±

∂a
=

N∑
l=1

det G(l) (B.3)

where

G
(l)
j l = ∂A±

j l

∂a
, G

(l)
jm = A±

jm m = l. (B.4)

In the case of dimension 1, the above expressions can be easily evaluated giving

∂det A±

∂k1
= 4

3
π (B.5)
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and

∂det A±

∂a
= −π2 − (

f ±
1

)2
. (B.6)

Since we have to calculate this function for the critical values a = 2n/
√

3 and
a = (2n + 1)/

√
3 in the symmetric and antisymmetric cases respectively, we get

(
f ±

1

)2 = 0,
so that

dk1

da
= 3

4
π. (B.7)

We will see below that this result is the leading term of the derivative when the matrix has
dimension N.

For larger dimensions, we should use the various approximations developed in appendix A
not only to obtain the matrix A, but also for the dependence of a on the number of bound
states. If we restrict ourselves to the first term in the expansion of tan (iα), one may use
equation (A.5) for the size parameter. Since the derivative of A with respect to a is

∂A±
jm

∂a
= −z2

m

(
1 + f ±

m

2
(k1, a)

)
ojm, (B.8)

one has the approximate expression

∂A±
jm

∂a
= 0 m > 1. (B.9)

Thus, in equation (B.3) only the first term in the sum survives, and one may write

dk1

da
= −det G1

0

det F0
(B.10)

with

(
G1

0

)
j1 = −

(
3

4
π2 +

(
det B

det C

)2
)

oj1

(
G1

0

)
jm

= (uj + wm)ojm m > 1,

(B.11)

and the matrix F0 has elements in the first row of the form (F0)1m = πo1m, and on the other
rows (j > 1),

(F0)j1 =
(

uj − det B

det C

)
oj1, (F0)jm = (uj + wm)ojm m > 1. (B.12)

One can verify that

dk1

da
= 3

4
π (B.13)

whatever the dimension of the matrix A± is.
The higher-order contribution to the leading term (B.13) can be determined through a

procedure similar to what has been done in the previous section. We refer to the symmetric
case for the sake of simplicity. One inserts the estimate for a given by equations (A.13) and
(A.14) into equation (B.2) for the partial derivative ∂ det A+/∂k1, and retains only terms up
to exp (−2π

√
5/3n). As for the derivative with respect to a, one has extra terms in the sum

(B.3), because the first term acquires a higher-order contribution, and the second term is no
longer equal to zero. Again, a series expansion truncated at next-to-leading order yields the
correction term to dk1/da as a function of the number of bound states n. Here, we limit
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ourselves to quoting the extrapolated numerical result which, for both even and odd solutions,
is given by(

dk1

da

)
k1=0

= 3

4
π ∓ 1.341 109 189 507 099 014 0286(1) exp

(
−π

√
5

3
n

)

+O
(

exp

(
−2

√
5

3
πn

))
. (B.14)

To complete this appendix, we have to evaluate the derivatives of k1 at threshold where
both k1 and a are equal to zero. As we have seen from equation (29), this derivative is the
ratio of derivatives of det A+. For a = 0, equation (B.2) reduces to

∂ det A+

∂k1
= det ‖π(δj,1 + (1 − δj,1)

√
j 2 − 1)ojm‖. (B.15)

It can be shown that(
∂ det A

∂k1

)
a=0

= πN

[ ∏
i=2,N

√
i2 − 1

]
det O (B.16)

where N is the dimension of the matrix and the matrix O is the matrix of the overlaps oj,m.
Noting that

∏
i=2,N

√
i2 − 1 = N !

√
N + 1

2N
(B.17)

and that

det O = 4N2

N !

∏
t=1,N

(2t − 1)!2

(4t − 1)!!(4t − 3)!!
(B.18)

we obtain (
∂ det A

∂k1

)
a=0

= πN4N2

√
N + 1

2N

∏
t=1,N

(2t − 1)!2

(4t − 1)!!(4t − 3)!!
. (B.19)

Analogously, the derivative of det A with respect to a at threshold, and for a = 0, reduces
to(

∂ det A

∂a

)
a=0

= det ‖π(δj,1(−π(1 − (m − 1/2)2)) + (1 − δj,1)
√

j 2 − 1)oj,m‖ (B.20)

and we obtain(
∂ det A

∂a

)
a=0

= −πN+1

[ ∏
i=2,N

√
i2 − 1

]
detO = −πN+1N !

√
N + 1

2N
detO (B.21)

with

Oj,m = δj,1 + (1 − δj,1)oj,m. (B.22)

It can be shown that

detO = (2N + 1)!((2N − 3)!!)24N2−N

(N !)2(N + 1)!(2N − 2)!

∏
t=1,N

(2t − 1)!2

(4t − 1)!!(4t − 3)!!
(B.23)
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that leads to the final result(
∂ det A

∂a

)
a=0

= −πN+1 (2N + 1)!((2N − 3)!!)24N2−N

N !(N + 1)!(2N − 2)!

√
N + 1

2N

∏
t=1,N

(2t − 1)!2

(4t − 1)!!(4t − 3)!!
.

(B.24)

Using the expressions obtained in equations (B.19) and (B.24), we obtain the first
derivative of k1 with respect to a, for a = 0,(

dk1

da

)
a=0

= −
∂ det A

∂a

∂ det A
∂k1

= π
2N(2N + 1)!(2N)!

16N(2N − 1)N !3(N + 1)!
. (B.25)

For large N, the Stirling approximation can be used for the factorials and equation (B.25)
reduces to (

dk1

da

)
a=0

= 2

N

[
1 − 1

4N
+

17

32N2
− 47

128N3
+ O(

1

N4
)

]
; (B.26)

therefore for N → ∞,
( dk1

da

)
a=0 = 0.

Appendix C

In this appendix we provide the asymptotic behaviour of the second derivative of k1 with respect
to a at threshold, in the two opposite limits a → 0 and a → +∞. Deriving equation (29),
one gets

d2k1

da2
= − 1

∂ det A
∂k1

∂2 det A

∂a2
−

(
∂ det A

∂a

)2

(
∂ det A

∂k1

)3

∂2 det A

∂k2
1

+ 2
∂ det A

∂a(
∂ det A

∂k1

)2

∂2 det A

∂a∂k1
, (C.1)

where the second derivative of det A in order to a variable is equal to the sum of N determinants
in which one row (or column) has been substituted by the second derivative plus twice the sum
of determinants in which two rows (or columns) have been substituted by the first derivative.

Let us consider first the case of a zero-size parameter. The first term to be evaluated is
∂2 det A

∂a2 . In this limit, the second derivative with respect to a of the matrix elements is zero;
therefore, the first sum of determinants is also equal to zero. Since the first row of A at
threshold is identically zero, the only terms that survive in the second sum of determinants are
those in which the first row is the derivatives of the matrix elements leading to

∂2 det A

∂a2
= 2

N∑
l=2

det Zl (C.2)

with

Zl(j,m) = (δj,1 + δj,l)
∂Aj,m

∂a
+ (1 − δj,1)(1 − δj,l)Aj,m. (C.3)

Substituting the value of the derivatives of the matrix elements of A

∂A±
jm

∂a
= −z2

m

(
1 + f ±

m

2
(zma)

)
ojm, (C.4)

which in our case reduce to

∂Aj,m

∂a

∣∣∣∣
a=0

= −π2(1 − (m − 1/2)2)oj,m; (C.5)
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the determinant of Zl becomes

det Zl = πN+2

[
N∏

i=2

√
i2 − 1

]
1√

l2 − 1
det

∥∥∥∥δj,1 + δj,l

ol,m

o1,m

+ (1 − δj,1)(1 − δj,l)oj,m

∥∥∥∥ (C.6)

leading to

det Zl = (2 − 2l2)
4N2−N(2N + 1)!!(2N − 3)!!

N !(N + 1)!(N − 1)!

∏
t=1,N

(2t − 1)!2

(4t − 1)!!(4t − 3)!!

= (2 − 2l2)
(2N + 1)!!(2N − 3)!!

4N(N + 1)!(N − 1)!
det O. (C.7)

Combining the previous results, we obtain

∂2 det A

∂a2
= −πN+2

[
N∑

l=2

√
l2 − 1

] √
N + 1

2N

(2N + 1)!!(2N − 3)!!

4N−1(N + 1)(N − 1)!
det O. (C.8)

The ratio appearing in the first term of equation (C.1), making use of equations (B.19)
and (C.8), reduces to

−
∂2 det A

∂a2

∂ det A
∂k1

= π2(2N + 1)!!(2N − 1)!!

4N−1(2N − 1)(N + 1)!(N − 1)!

N∑
l=2

√
l2 − 1. (C.9)

The second term of equation (C.1) contains the second derivative of det A with respect to
k1. Since for k1 = a = 0 the matrix A and the second derivative of the matrix with respect to
k1 have the first row equal to zero, while the first derivative is different from zero only in the
first row, this term is zero.

The last contributions still missing in the calculation of equation (C.1) are the mixed
derivatives of det A with respect to a and k. But the second derivative of a determinant with
respect to two variables, is equal to the sum of N determinants in which one row (or column)
has been substituted by the second derivative, plus the sum of determinants in which two rows
(or columns) have been substituted by the first derivative, one of them with respect to the first
variable, and the other with respect to the second one. Since the mixed second derivative of
the matrix elements is equal to zero, the first sum is zero. For the second sum, since the first
row of the matrix A is identically zero, and the derivative with respect to k is different from
zero only for the first row, the only term that survives is the one where the first row is derived
with respect to k and the other with respect to a, that is

∂2 det A

∂a∂k1
=

N∑
l=2

det

∥∥∥∥δj,1
∂Aj,m

∂k1
+ δj,l

∂Aj,m

∂a
+ (1 − δj,1)(1 − δj,l)Aj,m

∥∥∥∥. (C.10)

Using equations (C.5) and (B.1), we obtain

∂2 det A

∂a∂k1
= 4N2

πN+1

√
N + 1

2N

N∏
t=1

(2t − 1)!2

(4t − 3)!!(4t − 1)!!
·

N∑
l=2

√
l2 − 1

×
[

1 − 21−2N l2

(l − 1)(l + 1)

(2N − 2l − 1)!!(2N + 2l − 1)!!

(N − l)!(N + l)!

]
. (C.11)

Combining all the previous results we finally find for equation (C.1)

d2k1

da2
= 8π2 (2N − 3)!!(2N + 1)!!

16N(N − 1)!(N + 1)!

N∑
m=2

m2(2N − 2m − 1)!!(2N + 2m − 1)!!√
m2 − 1(N − m)!(N + m)!

. (C.12)
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The value of this expression for very large N can be inferred through the following
argument. One first rewrites the double factorials in terms of binomial coefficients, and
expands the troublesome weight factor m2/

√
m2 − 1 in a power series, to get

d2k1

da2
=

∞∑
l=0

C(l, N) (C.13)

where

C(l, N) =
(

2l

l

)
1

4l

8π2

162N

N(2N + 1)

(N + 1)(2N − 1)

(
2N

N

)2 N∑
m=2

m1−2l

(
2N − 2m

N − m

)(
2N + 2m

N + m

)
.

(C.14)

Using the identity

N∑
m=1

m

(
2N − 2m

N − m

)(
2N + 2m

N + m

)
= 1

2
(2N − 1)(N + 1)

(
2N − 2

N − 1

)(
2N + 2

N + 1

)
(C.15)

and the Stirling approximation for the binomial coefficients, one finds that C(0, N) behaves
for large N as

C(0, N) ∼ 4
(2N + 1)2(N − 1)(2N + 3)

(N + 1)2(2N − 1)2
. (C.16)

One may thus conclude that limN→∞ C(0, N) = 8.
To complete our argument, we have to show that all other terms in the series expansion

(C.13) go to zero as N → ∞. This can be proved by bounding from above each term in
equation (C.13) with a quantity, which vanishes for N → ∞. Let us consider, for instance,
the term C(1, N). Resorting to the Stirling approximation for

(2N+2m

N+m

)
, and taking into account

that m � 2, one has

22N

√
πN

N∑
m=2

22m

2m

(
2N − 2m

N − m

)
<

22N−2

√
πN

N∑
m=2

22m

(
2N − 2m

N − m

)
. (C.17)

The sum in equation (C.17) can be performed with the aid of the identity

N∑
m=2

22m

(
2N − 2m

N − m

)
= 16(2N − 3)

(
2N − 4

N − 2

)
. (C.18)

Using again Stirling’s formula for the binomial coefficient
(2N−4

N−2

)
, one finally has that C(1, N)

is bounded from above by the quantity

2(2N + 1)

(N + 1)
√

N(N − 2)

which approaches 0 as N → ∞. Similar considerations apply to the higher-order terms in
equation (C.13), so that one may conclude that d2k1

da2 = 8 when an infinite number of basis
functions are included in the calculation.

Finally, we have to obtain the second derivative of k1 for a large-size parameter where a
bound state appears. This is obviously done approximatively. We take for a the expression
given by equation (A.5), which corresponds to the first-order correction of the solution.

From the general expression of equation (C.1), the derivatives of the det A in order to a
and k1 have to be determined. Using equations (A.3) and (A.4) for the matrix elements, and
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the properties of determinants, noting that only the first column of the second derivative is
different from zero, leading to only one term in the sum of determinants, we obtain

∂2 det A

∂a2
= −2 det B

((
det B

det C

)2

+
3

4
π2

)
det C, (C.19)

and

−
∂2 det A

∂a2

∂ det A
∂k1

= 2 det B

((
det B
det C

)2
+ 3

4π2
)

det C

π det C + 4
3π

(det B)2

det C

= 3

2
π det B. (C.20)

For the mixed derivative, since the second derivative with respect to a and k1 of the matrix
elements is zero, the only term that contributes is the double sum of determinants of matrices,
where the row labelled by the first summation index is derived with respect to k1, the column
labelled by the second summation index is derived with respect to a, and the intersection
between this row and column is derived with respect to k1 and a. Noting that the derivative
with respect to k1 is only different from zero for the first row, and the derivative with respect
to a is different from zero only for the first column we get

∂2 det A

∂k1∂a
= −π

((
det B

det C

)2

+
3

4
π2

)
det K (C.21)

with

Kj,m = ((1 − δm,1)(1 − δj,1)π(
√

j 2 − 1 +
√

(m − 1/2)2 − 1) + (1 − δm,1)δj,1

+ (1 − δj,1)δm,1)oj,m. (C.22)

Combining the previous results

2
∂2 det A

∂k1∂a

∂ det A
∂a(

∂ det A
∂k1

)2 = 9

8
π3 det K

det C
. (C.23)

The last term to complete equation (C.1) is the second derivative of the matrix with
respect to k1, where the only contribution comes from the sum of determinants with the
second derivative

∂2 det A

∂k2
1

= 4

3

(
a

[(
det B

det C

)2

+
3

4
π2

]
+

det B

det C

)
det C +

N∑
l=1

det Ml (C.24)

with

Ml
j,m = oj,m

(
δm,l

[
(1 − δj,1)

π√
j 2 − 1

+ (1 − δm,1)
π√

(m − 1/2)2 − 1

]

+ (1 − δm,l)

(
π

√
j 2 − 1 − δm,1

det B

det C
+ π(1 − δm,1)

√
(m − 1/2)2 − 1

))

(C.25)

and

−
(

∂ det A
∂a

)2

(
∂ det A

∂k1

)3

∂2 det A

∂k2
1

= −
(

3

4
π

)2 1

det C 4
3π

((
det B
det C

)2
+ 3

4π2
)

×
[

4

3

(
a

[(
det B

det C

)2

+
3

4
π2

]
+

det B

det C

)
det C +

N∑
l=1

det Ml

]
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= − 9

16
π3a − 9

16
π3 det B

det C

1(
det B
det C

)2
+ 3

4π2

−
(

3

4
π

)2 1

det C 4
3π

((
det B
det C

)2
+ 3

4π2
) N∑

l=1

det Ml.

(C.26)

Combining equations (C.20), (C.23) and (C.26), we obtain the final result

d2k1

da2
= − 3

16

√
3π3n + 0.577 482 652 977 66(1) + O

(
e−π

√
5
3 n

)
n = 0, 1, 2, . . . (C.27)

valid for large a, and N → ∞.
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[18] Exner P and Vugalter S A 1997 J. Phys. A: Math. Gen. 30 7863
[19] Borisov D, Exner P and Gadyl’shin R 2002 J. Math. Phys. 43 6265
[20] Popov I Yu 1999 Rep. Math. Phys. 43 427
[21] Popov I Yu 2001 Appl. Math. Lett. 14 109
[22] Gadyl’shin R R 2004 C. R. Mecanique 332 647
[23] Linton C M and Ratcliffe K 2004 J. Math. Phys. 45 1359
[24] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes 2nd edn (Cambridge:

Cambridge University Press) pp 718–26

http://dx.doi.org/10.1103/PhysRevLett.60.848
http://dx.doi.org/10.1088/0022-3719/21/8/002
http://dx.doi.org/10.1103/PhysRevB.53.9959
http://dx.doi.org/10.1103/PhysRevB.61.10950
http://dx.doi.org/10.1103/PhysRevLett.66.930
http://dx.doi.org/10.1063/1.105558
http://dx.doi.org/10.1088/0034-4885/58/3/002
http://dx.doi.org/10.1088/0034-4885/59/2/003
http://dx.doi.org/10.1103/PhysRevB.48.12072
http://dx.doi.org/10.1007/s100510170203
http://dx.doi.org/10.1103/PhysRevB.48.14338
http://dx.doi.org/10.1103/PhysRevB.48.7991
http://dx.doi.org/10.1063/1.531673
http://dx.doi.org/10.1088/0305-4470/30/22/023
http://dx.doi.org/10.1063/1.1519941
http://dx.doi.org/10.1016/S0034-4877(00)86387-9
http://dx.doi.org/10.1016/S0893-9659(00)00121-X
http://dx.doi.org/10.1016/j.crme.2004.03.010
http://dx.doi.org/10.1063/1.1675931

	1. Introduction
	2. The bound-state problem
	3. Bound states and their scaling properties
	4. Conclusions
	Acknowlegments
	Appendix A
	Appendix B
	Appendix C
	References

